Norm estimation of the harmonic Bergman projection on half-spaces
نویسندگان
چکیده
منابع مشابه
Harmonic Bergman Functions on Half-spaces
We study harmonic Bergman functions on the upper half-space of Rn. Among our main results are: The Bergman projection is bounded for the range 1 < p <∞; certain nonorthogonal projections are bounded for the range 1 ≤ p < ∞; the dual space of the Bergman L1-space is the harmonic Bloch space modulo constants; harmonic conjugation is bounded on the Bergman spaces for the range 1 ≤ p <∞; the Bergma...
متن کاملA Sharp Norm Estimate of the Bergman Projection on L Spaces
We show that the norm of the Bergman projection on L of the unit ball in C is comparable to csc(π/p) for 1 < p <∞.
متن کاملBoundedness of the Bergman Type Operators on Mixed Norm Spaces
Conditions sufficient for boundedness of the Bergman type operators on certain mixed norm spaces Lp,q(φ) (0 < p < 1, 1 < q <∞) of functions on the unit ball of Cn are given, and this is used to solve Gleason’s problem for the mixed norm spaces Hp,q(φ) (0 < p < 1, 1 < q <∞).
متن کاملComposition Operators on Weighted Bergman Spaces of a Half Plane
We use induction and interpolation techniques to prove that a composition operator induced by a map φ is bounded on the weighted Bergman space Aα(H) of the right half-plane if and only if φ fixes ∞ non-tangentially, and has a finite angular derivative λ there. We further prove that in this case the norm, essential norm, and spectral radius of the operator are all equal, and given by λ.
متن کاملHankel Operators on Weighted Bergman Spaces and Norm Ideals
Consider Hankel operators Hf on the weighted Bergman space L 2 a(B, dvα). In this paper we characterize the membership of (H∗ fHf ) s/2 = |Hf | in the norm ideal CΦ, where 0 < s ≤ 1 and the symmetric gauge function Φ is allowed to be arbitrary.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Mathematical Society of Japan
سال: 2009
ISSN: 0025-5645
DOI: 10.2969/jmsj/06110225